О возможности использования сероводорода Черного моря.

Аватар пользователя krol_jumarevich

Уникальностью Черного моря является то, что оно единственное в котором более, чем 90% объема воды содержит растворенный в ней сероводород. Сероводород присутствует также в водах Красного моря, у побережья Перу, Намибии, в некоторых глубоких фьордах Норвегии, но в гораздо меньшем количестве, чем в Черном море!

В энергетическом отношении (по теплоте сгорания) 1 м3 сероводорода эквивалентен 0,65 м3 метана. Однако, если при сжигании последнего кроме воды образуется диоксид углерода −CO2, то продуктом непосредственного сжигания сероводорода является диоксид серы − SO2, дальнейшая переработка которого позволяет получить, кроме дополнительной теплоты, ценный продукт неорганического синтеза – серную кислоту. 

    Как известно, водяная толща Чёрного моря состоит из неоднородных слоёв, которые почти не перемешиваются. Верхний слой – «живой»: обычная вода, в которой обитают морские организмы. Нижний слой – «мёртвый»: он содержит в растворённом виде сероводород, и концентрация его настолько велика, что ниже 120-200 метров в Чёрном море жизни почти нет. 
  Н.Д. Зелинский выдвинул первые гипотезы образования черноморского сероводорода. Впоследствии эти гипотезы оспаривались.

    Среди множества версий выделяют три основные: восстановление сульфатов, гниение органических веществ и вулканическое происхождение. Эти версии не противоречат друг другу и, вероятнее всего, являются основными причинами образования глобальной сероводородной линзы. Чтобы понять эти причины, посмотрим на Черное море как на накопитель морской воды, поступающей извне. Еще 9 тыс. лет назад Черное море, подобно Каспийскому, было изолировано от акватории мирового океана. Глобальное потепление повысило уровень океана, и соленые средиземноморские воды хлынули в черноморскую впадину, вытеснив ее более легкую пресную воду к поверхности. В ходе дальнейших событий образовалось три слоя: термоклин, галоклин, пикноклин.

   Внешний слой термоклин, питаемый пресной речной водой, подвержен сезонным изменениям температуры и участвует в круговороте воды, обогащаясь кислородом, что делает его пригодным для жизни. Почти весь объем Черного моря содержится в пикноклине, который «питается» соленой водой через Босфорский пролив. Промежуточный слой галоклин, характеризующийся резким изменением солености, не позволяет двум другим обмениваться водами. В результате основная масса Черного моря является практически изолированной. Такие условия, с одной стороны, превратили его в отстойник веществ, поступающих из океана, с другой – сформировали особые бескислородные (анаэробные) условия, которые и являются основной причиной образования сероводорода.

     Расслоение Черного моря не позволяет пикноклину получать кислород, что породило уникальную анаэробную биосферу в черноморских глубинах, главную роль в которой играют особые сульфатредуцирующие бактерии. В ходе их жизнедеятельности происходит восстановление сероводорода из сульфатных ионов, которые, в свою очередь, возникают при разложении органических веществ. Такой процесс, называемый сульфатредукцией, происходит во всей толще вод пикноклина, но особенно интенсивен он на поверхности донных отложений, в слое толщиной всего несколько сантиметров.

    Сульфатредуцирующие анаэробные бактерии являются основным источником черноморского сероводорода. Бескислородная среда черноморских глубин также сопутствует второй причине образования сероводорода. При гниении отмерших организмов происходит распад белков, содержащих серу. Из-за того, что распад происходит без окисления, конечными его продуктами являются сероводород и сульфатные ионы. Заметим, что последние могут участвовать в дальнейшей сульфатредукции.

    Кроме органических источников сероводорода выделяют вулканические. Сероводород, порождаемый вулканической деятельностью тектонических разломов, остается в изолированных черноморских глубинах. Итак, Черное море можно назвать крупным генератором и накопителем сероводорода. Суммарные запасы сероводорода оцениваются в десятки миллиардов тонн при ежегодном приросте 4-9 млн тонн, что говорит о его свойстве возобновляться. 

   В результате за последние несколько тысяч лет здесь сформировалась сероводородная «линза», занимающая 90 процентов объёма моря!

   Несмотря на то, что количество сероводорода в черноморских глубинах практически не ограничено, его концентрация в воде относительно невелика, из-за чего добыча газа связана с выделением его из больших масс воды и очищением от примесей. Дело в том, что до сих пор не разработана рентабельная технология извлечения газа из столь громадных объёмов воды.

    Выделению сероводорода из морской воды препятствует следующее:

– низкая концентрация сероводорода, в сотни раз меньшая относительно его насыщенного раствора;

– концентрация недиссоциированной формы H2S не более 15%, преобладающая форма нахождения сероводорода, до 80 – 90%, диссоциированная, т.е. ионная, химически связанная.

   Поэтому не удивительно, что, несмотря на многодесятилетнюю историю попыток утилизации сероводорода Черного моря, до сих пор не разработано практически реализуемых технологий выделения его газообразной формы из морской воды. 

    Существует множество идей технологического решения этого вопроса. Эти технологии можно условно разделить по нескольким категориям.

     Одним из альтернативных подходов является выделение сероводорода на глубине. Разработаны способы, основанные на уже существующих технологиях очистки от сероводорода дренажных и пластовых вод. К примеру, аэрация содержащей сероводород воды, предварительно подвергнутой подкислению серной кислотой для снижения затрат и повышения эффективности. При этом необходимое количество серной кислоты можно производить из полученного сероводорода. Подобный способ основан на окислении сероводорода в воде озонированным воздухом, при котором вместе с очищенной водой выделяется сера. Известны способы, в которых подкисление воды совмещается с гидравлическими ударами или с воздействием вибрационных колебаний. Другим вариантом глубинной добычи является использование на глубине особых мембранных абсорбентов. Суть технологии заключается в том, что сероводород в таких абсорбентах растворяется на порядок лучше, что позволяет эффективно выделять его и доставлять на поверхность.

   Наибольший интерес представляют собой методы с использованием газлифта по аналогии с фонтанным способом добычи нефти, который, в свою очередь, является наименее затратным в нефтяной промышленности. Фонтанная технология основана на подъеме нефти за счет гидростатического напора и расширения содержащегося в нефти газа.

    На Рис. приведена карта акватории Черного моря с указанием глубин расположения верхней границы сероводородной зоны и распределением направления течений морской воды:

     Более удачен в плане использования газлифта такой подход. На дно моря опускается трубопровод, изолированный от воды закрытым затвором. Открытие затвора приведет к тому, что вода устремится вверх, теряя давление, в результате чего начинает выделяться сероводород, создавая эффект газлифта. Предполагается, что это создаст постоянный фонтан из высокообогащенной сероводородом воды, который будет действовать, пока в черноморской воде будет присутствовать сероводород. Численные расчеты и проведенные лабораторные эксперименты подтверждают эти смелые предположения. 

     Тут уместна аналогия с откупоренной бутылкой шампанского. Пока она закрыта, смесь газа и жидкости пребывает в спокойном состоянии. Открыли – изменилось давление, и пузырьки газа начали, высвобождаясь, подниматься вверх и увлекать за собой жидкость. Шампанское выплёскивается из горлышка бутылки. Вот так и сероводород, растворённый в воде, при изменении давления (верхний слой воды из трубы откачали!) будет поднимать газоводяную смесь вверх. В результате получается постоянно действующий газоводяной фонтан.

     “Коэрцитивная сила”, соответствующая разности давлений в подъемнике и в открытом море, характеризует эффективность фонтанного подъемника. Чем больше “коэрцитивная сила”, тем эффективнее работа подъемника. Численные расчеты перепада давлений на уровне моря для выбранных параметров дают величину порядка 0,15 МПа, что соответствует подъему сероводородной воды в подъемнике на технологическую высоту до 25 м.


    При этом, чем выше концентрация сероводорода в воде, т.е. чем глубже погружен нижний срез водозаборной трубы, тем эффективнее работает подъемник. Эффективность работы подъемника также возрастает при увеличении толщины бессероводородного поверхностного слоя моря в месте забора воды. Это означает, что необходимо осуществлять забор сероводородной морской воды с максимально возможных больших глубин в регионах моря с толстым бессероводородным слоем воды. 

    Таким образом, фонтанный подъем воды исключает расходование энергии и материалов, что делает этот вариант добычи сероводорода наиболее выгодным и привлекательным.

    Способы использования сероводорода можно разделить на два крупных направления. А именно: химическое производство и получение энергии.

    

    Есть многочисленные способы использования сероводорода, но главную роль отводят производству серы и серной кислоты. Серная кислота применяется главным образом для получения минеральных удобрений, однако есть целый ряд прочих продуктов, в состав которых она входит: от свинцовых аккумуляторов и нефтепереработки до химических волокон и пищевых добавок. Ключевой момент заключается в том, что сам процесс выработки кислоты включает в себя этап сжигания, позволяющий использовать полученное тепло для передачи теплоты отопительной системе и получения электрической энергии.

    Удельная теплота сгорания природного газа всего лишь в два раза превосходит теплоту сгорания сероводорода. Учитывая упомянутую ранее неисчерпаемость черноморского сероводорода, можно отметить перспективность его использования как готового топлива. В противовес этому существует ряд проблем горения сероводорода, которые требуют иного подхода к созданию и эксплуатации установок для его сжигания.

    Главной проблемой является сероводородная коррозия металлов, которая приводит в аварийное состояние обычный котел всего за не- сколько дней. Поиски решения этой проблемы показали, что сероводородная коррозия создает целый комплекс пагубных явлений. К примеру, перенапряжение во время аварийной остановки котла и термо- циклическая усталость металла, фактически разрушающая котел. Но эти поиски не оказались напрасными. Была разработана оптимальная конструкция котла, учитывающая весь спектр коррозийных явлений. Полученный при сжигании в котле сернистый газ направляется на дальнейшую переработку, в ходе которой и образуется серная кислота.

    Вторым основным продуктом сероводорода является сера, которая также находит широкое применение в промышленности.

    В основном это важный элемент химического производства, но особые перспективы она имеет в строительной и дорожной индустрии. Замена битума на серу не только снижает цену на асфальт, но и улучшает его качество. Сероасфальт и серобетон являются влагонепроницаемыми, эрозийно и химически стойкими материалами, что снижает затраты на ремонт.

    Учитывая извечную важность дорожной проблемы в России, следует принять во внимание и такой вариант использования черноморского газа. Существует множество способов производства серы, которые можно разделить на химические и термические. Химические способы различны между собой по сложности, затратам и энергоемкости, но благодаря более низким энергетическим затратам химическое выделение серы предпочтительнее термического. Все термические методы основаны на разложении сероводорода. Метод непосредственного термического разложения, который заключается в нагреве сероводорода, обладает высокой энергоемкостью и довольно высоким процентом непереработанного сероводорода.

      Альтернативой термическому служит плазменный метод. Он позволяет переработать практически весь сероводород, однако для этого требуется газ с высоким его содержанием. Снизить энергозатраты позволяет плазмохимический метод. Часть получаемого при разложении водорода расходуется на выработку плазмы, благодаря которой и разлагается исходный сероводород. Такая плазма позволяет более эффективно разлагать практически весь сероводород вне зависимости от его концентрации в газе, что делает этот метод менее требовательным и энергозатратным. Плазменная переработка сопровождается выделением водорода, который уже можно использовать для производства электроэнергии.

    Черное море является самым большим природным концентрированным  резервуаром сероводорода в мире. В связи с непрерывным накоплением сероводорода в Черном море, который необходимо рассматривать как энергоаккумулирующее вещество, становиться целесообразным разрабатывать технологии для его добычи и переработки. Существующие методы и технологии имеют ряд недостатков, которые пока не позволяют их эксплуатировать с экономической и экологической точек зрения. Но зарубку на память по поводу его возможного использования нужно сделать.

   Литература:

  "Альтернативная сероводородная энергетика Черного моря." Г.Н. Бондаренко, Б.В. Борц, Б.А. Горлицкий, И.М. Неклюдов, В.И. Ткаченко / 2009. - c. 12-19

  "СЕРОВОДОРОД ЧЕРНОГО МОРЯ"   В.В. Харченко, А.А. Долгий.

   "Как поставить сероводород Чёрного моря на службу людям?" Татьяна Максименко.

   "Водородная энергетика на основе сероводородных ресурсов Черного моря." И.М. Неклюдов, Б.В. Борц, О.В. Полевич.

Комментарии

Аватар пользователя grr
grr(9 лет 4 месяца)

Без поллитра не разбешся!

Истинно так!!!

Аватар пользователя jimjam
jimjam(11 лет 9 месяцев)

Почитайте, познавательно www.gazprom.ru/press/reports/2014/tons-of-sulfuric-concrete/

Аватар пользователя ДК
ДК(11 лет 7 месяцев)

то есть "ценное сырьё" некуда девать. ну тогда за ЧМ можно быть спокойным.

Аватар пользователя Куркуль
Куркуль(10 лет 2 месяца)

Я не понял, а чё за "карта акватории Чёрного моря"??? На аглицком - терпимо, но цвета суши...

Аватар пользователя krol_jumarevich
krol_jumarevich(9 лет 5 месяцев)

Считайте что карта историческая.

Аватар пользователя Куркуль
Куркуль(10 лет 2 месяца)

Считаю...

Аватар пользователя Крякодил
Крякодил(9 лет 5 месяцев)

Господа:

Не надо сероводород выкачивать! Нужно прямо под воду, в глубинный слой запустить проводящее волокно, похожее на очень разрежённую мочалку. Эта "мочалка" может быть сделана из, например, углеродных нитей, на которых сероводород будет окисляться:

H2S + 4H2O - 8e- = 10H+ + SO4(2-)

Сверху, в слои богатые кислородом, будет опущена проволка из нержавейки или никеля, тоже похожая на очень разрежённую мочалку. На ней атмосферный кислород будет восстанавливаться: 

О2 + 4H+ + 4e- = 2H2O

Таким образом, электростанция будет электрохимически окислять подводный сероводород не заморачиваясь с его извлечением и концентрированием.

Низкая плотность тока на единицу поверхности будет компенсироваться большой площадью поверхности "мочалкоподобных" электродов и длительностью функционирования электростанции.

Когда с поверхностных слоёв Чёрного моря в глубину нападает биомассы (умершего планктона, дохлых рыб), анаэробные бактерии окислят их биомассу с помощью новоявленых сульфат-ионов и воспроизведут сероводород.

Аватар пользователя jamaze
jamaze(12 лет 4 месяца)

 Интересно. А почему вы думаете, что электричество будет выделяться, а не потребляться?

Аватар пользователя alnoz
alnoz(12 лет 3 месяца)

И тут младоевропэйцам не повезло. Даже эта гадость от них отплыла к берегам турецким. 

Аватар пользователя 12936
12936(9 лет 9 месяцев)

Было дело уже когда-то - горело море. Прям как на мине сидите, Крол. А из нее топливо добывать может накладно оказаться.

О том еще Чуковский написал:

"А лисички
Взяли спички,
К морю синему пошли,
Море синее зажгли.

Море пламенем горит,
Выбежал из моря кит:
"Эй, пожарные, бегите!
Помогите, помогите!"

Долго, долго крокодил

Море синее тушил
Пирогами, и блинами,
И сушёными грибами.

Прибегали два курчонка,
Поливали из бочонка.

Приплывали два ерша,
Поливали из ковша.

Прибегали лягушата,
Поливали из ушата.

Тушат, тушат - не потушат,
Заливают - не зальют.

Тут бабочка прилетала,
Крылышками помахала,
Стало море потухать -
И потухло.

Вот обрадовались звери!
Засмеялись и запели,
Ушками захлопали,
Ножками затопали.
"

К.И. Чуковский

Аватар пользователя krol_jumarevich
krol_jumarevich(9 лет 5 месяцев)

Да, в 1927г. было дело.

Огненные стобы километровой величины в море.

Хотя и воняло тухлями яйцами, всеже полагают, что это больше были выходы метана, а не чистый сероводород.

Аватар пользователя Maximus
Maximus(11 лет 7 месяцев)

Есть многочисленные способы использования сероводорода, но главную роль отводят производству серы и серной кислоты.

Это уже не нужно. Из-за экологических требований к топливам, производители извлекают серу из нефти и газа. С другой стороны удобную нефть с низким содержанием серы добыли, стали добывать высокосернистую нефть. Итог - серы производится много, и производители не знают, куда её сплавить.

Страницы