Сила и слабость ИИ от Сбербанка

Аватар пользователя Olvik

Недавно я рассматривал совещание по вопросам разработки «Стратегии по развитию искусственного интеллекта» и дорожной карты к ней.  События развиваются стремительно. Борьбу «за интеллект» возглавил Сбербанк и он, надо признать, развил бурную деятельность.

Так, в Москве 8-9 ноября в рамках AI Journey состоялась двухдневная конференция с ведущими международными и российскими спикерами — экспертами в области искусственного интеллекта и анализа данных, а также представителями компаний — лидеров по развитию и применению технологий ИИ в бизнес-процессах. Организатор – Сбербанк РФ. В работе приняли участие 5000+ участников, 300+ - спикеров и экспертов. Её уже коротко обсуждали на АШ. Я просмотрел множество ключевых докладов и предлагаю свою версию. Как сказано в проспекте конференции, «AI Journey призвано стать одной из значимых международных площадок для проведения соревнований в области DS/AI, обмена опытом в развитии технологий искусственного интеллекта, обсуждения последних трендов и вопросов практического применения ИИ в промышленности, науке, бизнесе и повседневной жизни». Конференцию посетил Президент В.В.Путин. Заметное участие в работе конференции принимала компания Huawei, представители которой выступали и с пленарными докладами, и на секциях.

 

Мне это событие было интересно с точки зрения оценки состояния дел в области разработки ИИ и перспектив дальнейшего продвижения, по мнению самих участников. Этот материал позволил мне уточнить собственную позицию по вопросу принципиальной возможности создания сильного ИИ, которую я планирую изложить в следующих постах.

Как я уже отмечал, Сбербанк, являясь коммерческим финансовым учреждением, фактически, возглавляет развитие и продвижение программ по разработке ИИ в РФ. Что само по себе, достаточно странно. Какой бы любовью к «чистому знанию» ни обладал Сбербанк, всё равно, как мы увидим, во всей этой проблеме он, прежде всего, преследует коммерческий интерес. По словам Г.Грефа в рамках конференции должен «конституироваться» альянс 6 компаний в области разработки ИИ: Yandex, Mail.ru, Газпромнефть, МТС, РФПИ и Сбербанк.

Похоже, Греф временами забывает о том, что он банкир и приходит в какой-то экстаз, выступая по теме ИИ:

«AI доступен каждому человеку…И сегодня мы в Сбербанке говорим, если ты в каждом процессе… не используешь данные AI, значит ты уже позади, ты уже в истории...Мы очень любим технологии, …мы очень любим AI, мы очень любим машинное обучение. Просто потому, что это круто!»

Иллюстрируя эту «крутизну», Альберт Ефимов, руководитель лаборатории робототехники Сбербанка, заявил: «Мы переносим 21й век туда, где всё еще идёт 19й». Это он сказал, показывая ролик о беспилотнике, перевозящим сумку с наличными между селами на разных берегах Волги в районе Самары. Похоже, именно наличные от Сбербанка, буквально упавшие с неба, призваны, по его мнению, стать символом 21-ого века!

Интерес Сбербанка, как организатора мероприятия, состоит в привлечении программистов и разработчиков к своему новому облачному ИИ сервису AI SberCloud, работающему на суперкомпьютере «Кристофари» (1й в России, 7й в Европе, 29й в мире), созданном совместно с Nvidia и оптимизированным именно под нейросетевые алгоритмы. Сбербанк уже использует «Кристофари» для распознавания речи при анализе обращений клиентов в колл-центр банка, а также для автоматизированного робота-оператора. По словам руководителей Сбербанка, это их ответ на различные фактические и мнимые ограничения «партнёров» на доступ к инфраструктуре работы над ИИ (я упомяну их ниже). И они серьёзно рассчитывают на этом заработать. Рынок облачных технологий, по их словам, в прошлом году достиг 200 млрд.$. Сервис заточен именно на задачу обучения нейронных сетей на огромных массивах данных. В качестве примера уже решённых задач один из топ-менеджеров Сбера продемонстрировал синтез голоса Грефа, читающего стихи Бродского. Другой пример – авиакомпания S7 с помощью «Кристофари» обучила свою нейросеть предсказывать спрос на авиабилеты на «каждый конкретный рейс, день и даже час».  Здесь Сбер следует вполне в русле мировых тенденций. Так, Bank of America начал создание своего облачного сервиса в 2013 году, вкладывая десятки миллиардов долларов ежегодно (в этом году порядка 53 млрд.$). Это позволило сэкономить порядка 30 млрд. с 2010 года, в том числе за счёт сокращения персонала  (в 2010г. в BoA работало порядка 305 тысяч человек, в 2018-м — уже только 204 тысячи.).

 

В своём выступлении Греф много внимания уделил инфраструктуре работ по ИИ, отметив появление новых фреймворков для разработки ИИ.  Он указал и на существующие ограничения. Это относится к открытым репозиториям кода – один, GitHub (40 млн. пользователей из них 10 млн. добавилось в 2019г.,), недавно куплен Microsoft, а другой – GitLab, в октябре, по словам Грефа, запретил разработчикам «иметь жительство» в Китае и России, ссылаясь на угрозу персональным данным. (Мой сын, ежедневно работающий с этим репозиторием, уверяет, что это неправда – никаких ограничений до сих пор нет). Тем не менее, слова Грефа о внешних угрозах и санкциях позволили ему обосновать в глазах государственных чиновников необходимость создавать собственные облачные решения в области ИИ и репозитории кода: «Если компания не живёт в облаке – она живёт в прошлом» (Г.Греф,©).

 

 Конечно, все эти инфраструктурные проблемы, наверное, были интересны собравшими, равно как и обсуждавшиеся на секциях многочисленные аспекты использования нейросетевых алгоритмов для всего подряд. Но мне эти вопросы не слишком интересны. Они мне представляются глубоко вторичными в сравнении с концептуальными проблемами построения ИИ, которые до сих пор не решены.

Это, очевидно, понимали и организаторы, поэтому одним из основных вопросов, обсуждавшихся как на пленарном заседании, так и на специализированных панелях был вопрос о создании общего ИИ.

Оговорюсь, что русским эквивалентом английского AGI (Artificial General Intelligence) гораздо чаще называют сильный ИИ, а не «общий» ИИ, о котором говорили участники дискуссии. Равно как эквивалентом Artificial Narrow Intelligence (ANI) является не «частный», а слабый ИИ. Сошлюсь, хотя бы, на Википедию. Именно поэтому, всюду в цитатах ниже я заменю «общий ИИ», на сильный ИИ.

Во вступительном слове Г.Греф сказал, что «2018 стал первым годом, когда в приличных кругах стало не неприличным говорить о AGI». В мире, буквально, развернулась гонка за сильным ИИ. Стартапы DeepMind (грант от Google на $500+ млн.)  и OpenAI (грант на $1 млрд. от Microsoft) – проекты, заточенные исключительно на достижение AGI.

 

Чтобы оживить полемику по сильному ИИ, организаторы предложили группам разработчиков до конференции поучаствовать в соревновании. Цель соревнования — «приблизиться к созданию AGI и алгоритмов, способных обучаться и успешно проходить экзаменационные тесты разного уровня сложности». Необходимо было разработать алгоритм, который способен успешно ответить на вопросы экзаменационного теста ЕГЭ по русскому языку, основываясь на информации из открытых источников.

Участникам предоставлялись тестовые варианты заданий, которые можно использовать для валидации решений и для обучения. Решения участников отправлялись в автоматическую проверяющую систему и оценивались на скрытом наборе вопросов.

Участвовало 98 команд из 14 стран. Подведение итогов можно посмотреть здесь. Отмечу, что лучшее решение получило по экзамену 4, набрав 62 балла из 100, что организаторы посчитали хорошим результатом. О том, можно ли считать это шагом в направлении к созданию сильного ИИ - в дискуссии, которую я рассматриваю ниже.

 

Итак, возможность создание сильного (общего) ИИ  - одна из ключевых проблем, обсуждавшихся на конференции, хотя большинство докладов были посвящены всё же практическим проблемам создания экспертных систем на основе разных алгоритмов, в первую очередь нейронных сетей. Для всестороннего обсуждения вопроса о сильном ИИ было собрано несколько дискуссионных «панелей» из авторитетных экспертов, учёных, data-scientist’ов и т.п. Тем удивительнее было увидеть полное отсутствие ясной картины состояния дел и перспектив продвижения вперёд. Каждый говорил о своём, мало слушая и понимая выступления собеседников.

Прогресс в работе над сильным ИИ, по мнению многих экспертов, связан с движением по трём направлениям –

  1. Наращивание вычислительной мощности компьютеров
  2. Разработка новой архитектуры процессоров, оптимизированной под задачи ИИ
  3. Теоретическое осмысление комплекса проблем связанных с определением сознания, мышления, интеллекта. Прежде всего в их естественной, а уж потом и искусственной реализации.

 

Что касается увеличения вычислительной мощности, прямо связанной с числом транзисторов на один чип, то она пока ещё формально растёт. Хотя закон Мура уже не действует. Классическое определение закона Мура гласит, что число транзисторов на чипе удваивается каждые два года (18 месяцев в другой версии). С 1965 по 1975 год их число удваивалось каждый год. Примерно с 2008 года темп замедлился от 2,5 до 3 лет. Никогда темпы удвоения не составляли ровно 18 месяцев, хотя это самая известная версия закона. Но при этом, вся «прелесть» закона Мура состояла в том, что должна примерно теми же темпами падать и стоимость их производства. Теперь это уже не так

(слайд из презентации Николая Суетина, Вице-президента Сколково по образованию и науке). Да и дальнейшее наращивание плотности транзисторов упёрлось в технологические и физические пределы. Именно поэтому, уповают на новую чудо-архитектуру и квантовые компьютеры. Учёные MIT опубликовали данные, согласно которым оптимизация одной не самой сложной модели ИИ (связанной с обработкой естественного языка: машинный перевод, анализ и генерирование текста) требует затрат, эквивалентных выбросам CO2 от эксплуатации 5 автомобилей в год.  Например, для модели Transformer обучение на 65 млн параметров вызывает выброс объемом примерно в 11 кг, когда же количество параметров возрастает до 213 млн, выделяется уже 87 кг вредных для окружающей среды веществ. То есть, это очевидный тормоз, не устранимый в рамках существующей архитектуры. Выход - оптимизация архитектуры под задачи работы с нейросетями (основанные на тензорных вычислениях). Сразу несколько компаний ведут работы в этом направлении. Так, спикер от Huawei широко рекламировал новый процессор Ascend 910, как «the world's most powerful AI processor». Пытаются не отстать NVidia и другие. Много говорят о биокомпьютинге и нейроморфных технологиях. Тем не менее, по мнению Суетина, всё, что мы будем делать в ближайшие 10 лет, будет основано на кремниевых технологиях.

Пункты 1 и 2 на пути к сильному ИИ, как полагают, могут быть связаны с использованием квантовых вычислений и созданием квантового компьютера. Этому было посвящено специальное заседание.

Панель «ИИ и квантовые технологии: будущее наступает сегодня»

 Ведущий панели, Владимир Кононов, депутат Госдумы РФ, сказал, что российские и зарубежные эксперты сходятся во мнении, что «квантовый компьютер будет создан в ближайшие 10 лет».

Я приведу лишь некоторые, показавшиеся мне содержательными, мысли.

Геннадий Красников, (академик РАН, генеральный директор АО «НИИ Молекулярной электроники», председатель Совета директоров ПАО «Микрон»). Квантовые технологии сводят к квантовым вычислениям – это неверно. Вся электроника давно квантовая. (от себя добавлю - действительно, факультет физической и квантовой электроники (ФФКЭ) на Физтехе существует с 1964г.) Размеры техпроцессов «давно сопоставимы с волной де Бройля основных носителей». И там должны учитываться квантовые эффекты. Современная дорожная карта – 1 трлн транзисторов на чип к 2035г. (сейчас 20-30 млрд.). Перспективное направление - создание  перепрограммируемой постоянной памяти не потребляющей энергию.. с перспективой создания нейроморфных процессоров. В квантовых компьютерах есть проблема избавления от ошибок вычислений, как следствие на один логический кубит нужно 6 (в другом месте он говорит  «от 5 до 10») физических. Для квантового компьютера мы должны создать систему не в 50, а под 1000 кубитов, которые должны работать в когерентном состоянии десятки секунд и позволять проводить операции коррекции ошибок. Следует осторожно давать прогнозы, в ближайшие десятилетия такого прорыва в квантовых (вычислениях) не будет. Нужно отделять науку от пиара и желания заработать на модной теме. Бум будет происходить, скорее, в нейроморфных вычислениях.

Сергей Салихов, 1й проректор НИТУ МИСиС. Проинформировал, что заработал первый в нашей стране прототип квантового компьютера. Дорожная карта предусматривает три направления: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. За квантовые вычисление и создание квантового компьютера будет отвечать Росатом, за квантовые коммуникации (криптография) – РЖД (точнее, Транстелеком, входящий в РЖД), за квантовые сенсоры – компания Ростех. В центре Национальной технологической инициативы по квантовым коммуникациям МИСиС они в сентябре продемонстрировали Путину работающую квантовую линию видеосвязи, которая «абсолютно защищена» от взлома (Красников поправил, что об «абсолютной» защите говорить не приходится – уязвимости остаются, см. например здесь). Потенциально заинтересованы банки. Прежде всего, Газпромбанк и Сбербанк. В МИСиС реализовали прототип квантового компьютера на 2х кубитах, достигнув «точности в 53%» (при большом числе повторений одного и того же вычисления можно с высокой долей вероятности (насколько угодно близко приближаясь к 100% точности) получить верный ответ. Этого можно достичь, если вероятность правильного ответа выше 50% хоть немного и чем больше это превышение, тем меньшее количество вычислений нам нужно провести для получения ответа с желаемым количеством девяток после запятой в проценте нашей уверенности в его корректности). Созданные в НИТУ «МИСиС» сверхпроводниковые (охлаждение до -273,14°С) кубиты реализованы из алюминия и представляют собой квантовый осциллятор на основе джозефсоновского перехода, имеют размер в 300 микрон.

Возникла коллизия вокруг понятия «квантовое превосходство».

По определению,  квантовое превосходство – переломный момент, при котором квантовый компьютер сможет выполнить задачу, решить которую раньше считалось невозможным или на ее решение потребовалось бы невероятное количество времени, используя текущие передовые технические достижения цивилизации.

Так вот, на панели упомянули о том, что Google 23 октября повесил на сайте NASA доклад о квантовом превосходстве. Вроде бы, квантовый компьютер Google смог за 3 минуты и 20 секунд выполнить расчет, на который самому мощному в мире суперкомпьютеру Summit (IBM) понадобилось бы примерно 10 тыс. лет. Информацию об этом научном открытии сотрудники компании изложили в публикации, которая была размещена на сайте НАСА. Однако через некоторое время данный доклад был удален с сайта без объяснения причин.

В своей публикации специалисты Google уточнили, что их новая система может выполнять только один расчет, а использование квантовых компьютеров для решения практических задач находится еще в далеком будущем.

Пока, в основном, квантовые компьютеры «тренируются на кошках», раскладывая, например, числа на простые множители. В настоящее время самое большое число, разложенное на квантовом компьютере с помощью алгоритма Шора, равно 56513. Для этого ученым понадобилось использовать четырехкубитный компьютер.

Подводя итог этой части дискуссии, могу привести слова авторитета. Дарио Джил (Dario Gil), руководитель IBM Research, сказал, что «квантовые компьютеры никогда не будут господствовать над классическими компьютерами, а будут работать вместе с ними, поскольку у каждого есть свои уникальные преимущества».

Моя позиция близка к позиции М.И.Дьяконова (д-р. физ.-мат. наук, Университет Монпелье, Франция), высказанной и обоснованной им в Бюллетене №21 «В защиту науки» Комиссии по борьбе с лженаукой:

Я думаю, что несмотря небывалую активность в течение 20 лет, история квантового компьютера приближается к своему концу, потому что 20 лет — это типичное время жизни большого пузыря в науке, потому что слишком много необоснованных обещаний было дано, потому что общество устало от почти ежедневных объявлений о новых «прорывах», поскольку все академические позиции в области квантовых вычислений уже заняты, потому что адепты квантовых вычислений стареют и становятся менее активными, в то время как молодое поколение ищет чего-то нового.

Обсужденные выше проблемы, как и другие, неупомянутые здесь, оставляют серьезные сомнения относительно дальнейшей судьбы квантового компьютера. Огромный разрыв между элементарными, но при этом очень трудными экспериментами, с одной стороны, и крайне разработанной, но при этом довольно безответственной теорией, с другой стороны, не представляется скоро преодолимым. Кроме того, по-прежнему нет ясности с преимуществами гипотетических квантовых вычислений — стоят ли они усилий поколений исследователей и инженеров.

Беспрецедентный уровень рекламы и необоснованных обещаний, сопровождающий эту эпопею, служит плохим признаком, как и великое множество безответственных в большинстве предложений осуществления «квантовых вычислений с помощью…».

Таким образом, перспективы квантовых вычислений представляются крайне сомнительными.

 

Более интересным для меня стало обсуждение пункта 3 из упомянутых выше направлений приложения усилий в борьбе за сильный ИИ. А именно, уточнение исходных понятий и принципов функционирования сознания, мышления, интеллекта.

Большой энтузиазм у собравшихся вызвало выступление «доктора Курпатова».  Врач-психотерапевт, телеведущий, продюсер, бизнесмен — Андрей Курпатов, известный в народе как «Доктор Курпатов», недавно назначен научным руководителем Лаборатория нейронаук и поведения человека Сбербанка. Его лекция называлась «Принципы программирования мозга». (трансляция Brain Principles Programming с 1.55.00). Это, конечно, не оригинальное исследование, а достаточно грамотный обзор одного их подходов к использованию нейронаук в создании сильного ИИ.

Он очень хороший оратор, поэтому, даже спорные вещи он излагал с убедительной уверенностью, чем вызвал у собравшихся иллюзию понимания проблемы.

Я не собираюсь пересказывать его объёмное выступление, тема заслуживает отдельного подробного обсуждения. Вот лишь краткие тезисы.

Мы не совсем понимаем, что такое мышление или естественный интеллект. Сейчас мы изучаем, что такое естественный интеллект, и параллельно пытаемся сделать искусственный (несколько международных проектов: Blue Brain Project, Human Brain Project, Brain Initiative). Когда мы собираемся воспроизводить мозг, возможно, мы совершаем ошибку…возможно нам нужно воспроизводить не коннектом (всю совокупность связей нейронов), а принципы функционирование естественного интеллекта для цифровой среды. Есть пять метапринципов работы мозга на всех уровнях организации:

  1. Принцип генерации сложности
  2. Принцип отношения элементов
  3. Принцип аппроксимации до целого
  4. Принцип преобразования от локальности к генерализации и обратно
  5. Принцип «тяжести», как мозг принимает решения

Далее он подробно обсуждает каждый из этих принципов и делает вывод о том, что если мы сможем интегрировать все эти принципы в искусственной системе, «вложив их один в другой», то мы получим новое существо, обладающее интеллектом, который будет работать на принципах мозга. При этом, оно, существо, будет способно на гораздо большее, чем мы, не будучи ограничено нашими потребностями, нашими способами восприятия и т.п.

Можно подумать, что это разумный подход и многообещающий проект, если бы не один вопрос - А зачем это нужно Сбербанку? Анна Морозова, руководитель проекта «Лаборатория Поведенческих наук» в РАНХиГС объясняет:

«Насколько мы понимаем, основной фокус создаваемой в банке лаборатории — «внешний», взаимодействие с клиентами, подбор лучшего продуктового предложения для него, и приложение к этой ситуации передовых наработок в области нейрофизиологии, социальной психологии и когнитивистики».

То есть, простым языком, использовать последние достижения науки для разработки инструментов социальной инженерии и манипуляции клиентами, с целью навязать им набор финансовых услуг от Сбербанка так, чтобы они ещё и остались благодарны.

Более общий, фундаментальный подход к проблеме ИИ пытались предложить участники

панели «Философские проблемы ИИ»

Модератор, Альберт Ефимов, руководитель лаборатории робототехники Сбербанка, напомнил собравшимся о критериях отнесения ИИ к категории сильного. Речь о пресловутом тесте Тьюринга.

Тест Тьюринга считается пройденным, если компьютеру удается вводить человека в заблуждение хотя бы в 30 % случаев. На сегодняшний день таких машин уже довольно много. В 2014 году полноценный тест с успехом прошла программа «Eugene Goostman/ Женя Густман» (c результатом 33 %), воссоздав интеллект виртуального 13-летнего подростка из Одессы. 

Сейчас таких тестов на интеллект разработано множество.

 
Вот подборка некоторых из них

 

Серьёзные эксперты считают подобного рода тесты не слишком содержательными, так как они неизбежно направлены на «тестирование» лишь одной из многих сторон того феномена, который мы называем человеком. Да, ИИ может оперировать громадными числами (чего ни один человек не может) или сочинять музыку/ писать стихи (что могут далеко не все люди), но это не говорит о том, что ИИ равен человеку или превосходит его. Речь идёт о конкретных задачах и специальных алгоритмах. Не более того.

А.Ефимов предложил говорить об эпохе «пост-Тьюринг». Он так проиллюстрировал это понятие.  Допустим, общение на сайте знакомств, всё нравится. Попытка встречи в реале. Партнёр не пришёл, так как оказался chat-bot’om. Другая история, в чате всё нравилось, встретились – не о чем говорить, с компьютером было интереснее. Так как «компьютер» всё знает о нас (существует ваш полный профиль и все ваши интересы известны). Пост-Тьюринг – это когда мы точно знаем, что разговариваем с компьютером, и нам с ним интереснее, чем с человеком. И более полезно. Компьютер знает о нас больше, чем мы сами.

И опять же, это не про сильный ИИ, а про вызовы цифровой эпохи.

В дискуссии приняли участие:

В.А. Лекторский, академик РАН, Институт философии РАН. Председатель научного совета по методологии ИИ и когнитивных исследований при Президиуме РАН

А.Ю.Алексеев, философский факультет МГУ, доктор философских наук,

В.Г.Буданов, институт философии РАН, доктор философских наук

С.Н.Васильев, институт проблем управления РАН, профессор, академик РАН

Д.И.Дубровский, институт философии РАН

В.В.Миронов., МГУ, декан философского факультета.

Ю.Шмидхубер, научный руководитель Swiss AI Lab IDSIA, профессор Университета Лугано, один из создателей LSTM нейронных сетей.

Модератор С.Б.Переслегин, футуролог, «Знаниевый реактор»

Опрос среди участников: «Возможно ли создать общий ИИ в перспективе 25 лет?» –

Ответы (по порядку из вышеприведённого списка): всё сложно; всё очень сложно; всё ещё сложнее; уже поздно (Буданов); всё сложно; всё сложно; всё просто (Шмидхубер).

«Будет ли вообще создан общий (сильный) ИИ?» – да, но ограниченный; всё сложно; да; да; да; теоретически мыслимо; да, конечно.

 

Вот лишь некоторые соображения участников дискуссии, позволяющие представить уровень понимания проблемы сильного ИИ.

В.А. Лекторский:

Чтобы создать ИИ надо знать, что такое естественный интеллект. По его мнению, интеллект – это способность решать мыслительные задачи. Есть когнитивная нейронаука. Думали - изучим мозг и поймём, как человек мыслит, что такое сознание. Не получилось. Человек не просто мозг – это способ взаимодействия с миром. Что такое сознание? Есть ли у человека? Наверное, есть (!) А у кошки. А у червя? Что такое «я»? Разные ответы есть. Какое эволюционное значение несёт появление сознания? Большой вопрос. Идеи трансгуманизма, твой разум на цифровом носителе. Кафка, рассказ «Превращение», человек проснулся и почувствовал себя тараканом, ползущим по потолку. Разум в другой телесной оболочке. Проблема свободы.

В целом, мысли академика довольно сумбурны и с трудом поддаются содержательному обобщению.

Д.И.Дубровский:

Иногда специалисты по ИИ забывают, что сами они имеют естественный интеллект, который стремится создать искусственный. Меняется наша телесность в связи с этими чипами и так далее, а это меняет наше сознание, наши смыслы. Возможно ли искусственное сознание? – Да, теоретически возможно, согласно принципу изофункционализма систем, согласно которому одна и та же функция может быть воспроизведена на разных по своим физическим свойствам субстратах (аналогия – естественный зуб – искусственный зуб). Сознание есть функция мозга и теоретически можно построить самоорганизующуюся систему на других субстратах, обладающую теми же функциями. Чтобы продвинутся, нужно определить, что же такое сознание. Возникает «трудная проблема сознания». Специалисты по ИИ утверждают, что «трудная проблема сознания» не нужна. Они могут без неё обойтись. Если явлениям сознания нельзя приписывать физические свойства (массу, пространственные характеристики), то как объяснить связь сознания с мозговыми процессами, которая принимается всеми? Как объяснить причинную функцию сознания –вот я подумал, и моя рука потянулась взять предмет? Как объяснить феномен свободы воли и её связь с детерминизмом мозговых процессов?

В.Г.Буданов:

Никакого естественного интеллекта нет, мы и есть с вами тот самый большой ИИ. Когнитивные карты и нейронные сети новорождённого воспитываются в искусственной среде нашей культуры. И этот большой ИИ пытается сейчас осознавать себя и воспроизвести себя. Происходит попытка этого большого ИИ перейти «с белка на песок» (на кремний).

А.Ю.Алексеев:

 О влиянии проблемы общего ИИ на философию.  Четыре основных проекта: Искусственная жизнь, искусственный мозг (сознание), искусственная личность и искусственное общество. В связи с проблемой ИИ  философия вынуждена переосмыслить вопросы; а что такое жизнь, сознание, личность и общество?

Ю.Шмидхубер, профессор университета Лугано, один из создателей сетей LSTM

 Создать сильный ИИ просто. Научить агент улучшать свои действия в окружающей среде, пользуясь датчиками для обратной связи («боли» при натыкании на препятствие, «голода» при низком заряде батарей и т.п.). Всё это можно сделать в нескольких строках кода и мы это сделали 30 лет назад. «Трудная проблема сознания» переоценена, мы его имеем уже долгое время в искусственных системах. Альтруизм есть продолжение эгоизма, поэтому, если запрограммировать ИИ на сотрудничество (за которое он получает больше «наград» и меньше «боли»), то он станет сотрудничать. Это мы получили ещё в прошлом тысячелетии, создавая сообщества разных роботов и программируя их на решение задач, которые они могли решить только сообща. Одни и те же принципы действуют в человеческих и ИИ-сообществах. Не надо усложнять.

Соображения этого Шмидхубера очень показательны. Так думают многие программисты/дата-сайентисты: запрограммировать функции «боли», «удовольствия», «альтруизма» и ИИ-человек готов!

А постановка целей (целеполагание)? – Можно запрограммировать и это, отвечают они, скажем, максимизация функции удовольствия или стремление к саморазвитию.

В связи с проведённым соревнованием, возник вопрос: можно ли считать ИИ, сдавший ЕГЭ, общим ИИ?

Мне даже сама постановка такого вопроса кажется некорректной, так как никто из присутствующих  так и не сформулировал критерии отнесения ИИ к сильному. К тому же, эксперты сходятся на том, что уже слабый интеллект способен решать отдельные, частные проблемы также хорошо или даже гораздо лучше человека.

Любопытным показалось следующее рассуждение.

Васильев: Некоторые глубокие математики (например, В.А.Воеводский), пережили душевную драму, осознав, что для доказательства некоторых современных теорем нужно привлекать компьютер. А если не только для доказательства, но и для формулировки некоторых содержательных теорем использовать компьютер? Есть база данных теорем для программ-пруверов. Поэтому, можно ожидать, что в перспективе компьютерная программа сможет получить если не Нобелевскую, то уж Филдсовскую премию. Но тогда надо делать другой Нобелевский комитет специально для ИИ.

 

Итак, по итогам дискуссии вынужден констатировать, что осмысление самой задачи создания сильного ИИ практически не продвигается. Программистам и data-scientist’ам это просто не нужно, не за это им платят. А философы, как представляется, существенно отстали со своим понятийным аппаратом от тех новых явлений, которые сопровождают повальную цифровизацию. Показалось, что осмысление проблем сильного ИИ интересует только достаточно зрелых (зачастую, пожилых) людей из прошлой, «доцифровой эпохи». Молодёжи эти проблемы не кажутся актуальными.

Этот пост я рассматриваю как подготовительный материал для анализа. В следующих постах я надеюсь продолжить содержательное рассмотрение различных аспектов проблемы создания сильного ИИ.

 

Авторство: 
Авторская работа / переводика

Комментарии

Аватар пользователя alexsword
alexsword(13 лет 1 месяц)

Эту шнягу про ИИ сейчас лепят везде подряд, как я понимаю и к обычному скорингу, и табличкам имени Excel.  Как раньше "нано" лепили.

Конкретно Грефу не в первой запускать пустой но громкий хайп, я помню беготню вокруг СЭЗ когда он был еще министром.

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Сходство с нано-бумом, действительно, есть. Однако, "шняга про ИИ" не так безобидна. Она непосредственно связана с более общей темой цифровизации и уже используется для совсем небезобидных вещей типа социального рейтинга и военных приложений.

Мнение учёных РАН по теме ИИ выразил член-корр РАН Игорь Анатольевич Каляев "Миф об искусственном интеллекте".

Аватар пользователя Системник
Системник(9 лет 9 месяцев)

непосредственно связана с более общей темой цифровизации и уже используется для совсем небезобидных вещей типа социального рейтинга и военных приложений

Это делают обычные алгоритмы, ИИ тут никаким боком не причастен.

Аватар пользователя Above_name
Above_name(12 лет 1 неделя)

Два мнения:

И.Ашманов про т.н. ИИ: "Набор методов машинного обучения, позволяющий машине имитировать человеческие функции".


 Mc_Aaron [Белоруссия] (4 года 4 месяца) (23:22:20 / 13-07-2019)
ИИ не существует. В смысле, со времен создания лиспа и пролога в этой сфере мало что изменилось.  ИИ -- это прежде всего логика, производство закономерностей, ранее неизвестных. а то, что сегодня хайпуется, это обычное "image processing and patttrn recognition" с использованием моделей нейросетей. Ни нейросети, в смысле их модели, ни алгоритмы обучения сетей и просих дискриминантных функций никакого отношшения к ИИ не имеют. Распознавание образов -- это не ИИ ни разу и близко не стоит.

Аватар пользователя Системник
Системник(9 лет 9 месяцев)

Ашманов тут не авторитет от слова никакой. Ему строчки кода надо продавать.

Второе определение гораздо ближе, но не полное.

Аватар пользователя Above_name
Above_name(12 лет 1 неделя)

И́горь Станисла́вович Ашма́нов (р. 9 января 1962, Москва, СССР) — российский предприниматель в сфере информационных технологий, искусственного интеллекта, разработки программного обеспечения, управления проектами.

Вряд ли "Ашманов тут не авторитет от слова никакой", хотя "ему строчки кода надо продавать".

Аватар пользователя Системник
Системник(9 лет 9 месяцев)

Он обычную OCR ИИ называет. Для продажи. Судите сами какой.

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Дело в том, что абсолютное большинство участников не делало различий между понятиями "искусственные нейросетевые алгоритмы" и ИИ. И это тоже проблема постановки задачи!

Аватар пользователя Системник
Системник(9 лет 9 месяцев)

Не "участников", а обывателей.

Те, кто участвует (которые рубят с этого) - всё прекрасно понимают.

Аватар пользователя VladimirKox
VladimirKox(7 лет 2 месяца)

Вообще-то, нейросетевые алгоритмы ни разу ни нейро. Это фикция, т.е. математическая абстракция, основанная на ошибочных представлениях электрофизиологов середины прошлого века о работе мозга. С тех пор как мировые звезды нейробиологии выступили со статьей The Neuron Doctrine, Redux Article in Science · December 2005 DOI: 10.1126/science.1114394 · Source: PubMed CITATIONS 95 утекло не мало воды. Их поддержал Д.А.Сахаров из инст. им Кольцова "Нейробиология, накануне смены парадигм". Я тоже внес свою лепту http://molbiol.ru/forums/index.php?s=0d9cbbb0145b6983d25eed34570b400d&sh... , ОСТОРОЖНО! МНОГО БУКФФ

P.S.

Ученый пытается корректно описать обькутивную реальность. Инженер, основываясь на накчных описаниях объективной реальности делает полезные артефакты. Если описания объективной реальности некорректны, то у инженера может получиться что-то.

Аватар пользователя VladimirKox
VladimirKox(7 лет 2 месяца)

Извините, погорячился. Нейронный коннектом всё-таки есть, и синаптическая пластичность, меняющая вес синапсов,  - тоже есть. Но, в отличии от "нейронных сетей", живые нейроны функционируют не в вакууме, а в сложном межклеточном сообществе, онтологическая схема которого ещё не расписана и не осмыслена до конца. А в межклеточном сообществе мозга, наряду с эволюцией коннектома при обучении,  существуют и другие вычислительные системы, влияющие на работу коннектома.

P.S.

*описать объективную реальность

*основываясь на научных

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Спасибо за ссылку! Много интересной и новой для меня информации.

Первое знакомство с материалом позволяет мне предположить, что успех в создании нейроморфных процессоров на сегодня ещё менее вероятен, чем достижение "квантового превосходства".

Аватар пользователя VladimirKox
VladimirKox(7 лет 2 месяца)

Ну почему же? Дорогу осилит идущий... IBM делает нейроморфные процессоры с моделированием синаптической задержки. Каляев делает вычмслительные кластеры с динамической архитектурой. Вот так, с помошью последовательных итераций будут устраняться различия между симулятором и прототипом. Задача - решаема, при разумном распределении сил и средств. Одни - делают матмодель, другие ее тестируют, третьи выискивают  значимые параметры проигнорированные первыми. Так SBML развивается.

Аватар пользователя monk
monk(12 лет 9 месяцев)

Странный академик. Вот цитата 

Поясню. Все программы, на основании которых работает компьютер, в том числе и так называемые интеллектуальные, разработаны и созданы человеком. Компьютер сам по себе не думает, он просто жестко выполняет заложенную в него программу. Заложенную разработчиком, то есть человеком. Разработчик программы всегда может предсказать, как машина будет действовать в той или иной ситуации.

А теперь возьмём, например, AlphaGo. Её разработчики ввели в неё только общие правила, все эвристики программа вывела сама. И даже её разработчики не смогут предсказать, какой ход она сделает или почему она сделала именно такой ход. Более того, программы, работающие по такому принципу, были известны давно. В 1956 году Артур Сэмюэл написал программу для игры в шашки, которая после обучения (на примерах из учебников по шашкам) играла лучше него самого.

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Я, скорее, согласен с академиком.

Действительно, из того, что разработчики сами не смогут предсказать итогов расчёта факторизации двадцатизначного числа, вовсе не следует, что они не понимают логики работы алгоритма, который это сделает за них. Ничего сенсационного алгоритм не даст.

Аватар пользователя monk
monk(12 лет 9 месяцев)

Сейчас типовой ИИ алгоритм выглядит так:

  1. взять много данных вида вопрос-ответ. Или вопрос-ответ-мера правильности.
  2. по данным построить эвристики, описывающие эти данные
  3. по построенным эвристикам давать ответы на новые вопросы.

Пункт два описывает построение алгоритма для получения ответа, но не даёт возможности узнать сам алгоритм. ИИ не программируется, а дрессируется. И также, как родители не всегда могут предсказать поведение своего ребёнка, так и разработчик не может угадать, какую эвристику алгоритм придумает на основании входных данных (что посчитает существенным, а что случайным).

Да, классы эвристик сейчас задаются вручную. Но если написать программу, которая сможет читать описания возможных эвристик и добавлять их в свой код, то даже список классов эвристик станет недоступен для разработчика.

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Такой подход уже был частично реализован в прошлом веке в проекте Дугласа Лената Eurisko, в котором программа на LISP совершенствовала сама себя. По какой-то причине этот проект не имел продолжения.

Почти в каждой солидной работе по философии ИИ рассматривается вопрос о целесообразности создания ИИ, результаты работы которого непредсказуемы. К сожалению, действующих программистов-разработчиков такие вопросы, похоже, совсем не интересуют.

Аватар пользователя Gray
Gray(10 лет 4 месяца)

В современных попытках в ИИ появился ещё один очень важный шаг. После первичного обучения - вносят в обучение элемент случайности, разделяют на множество агентов и заставляют их соревноваться друг с другом, продолжая мутировать/обучаться в зависимости от результатов. Эволюционный подход. Так было реализовано в частности в AlphaGo.

Это позволяет радикально компенсировать неполноту обучающей выборки, что и позволило AlphaGo добиться таких результатов. Основная фишка в том что результат перестаёт быть полностью детерминирован входными данными и перестаёт ограничиваться ими. (Ну и доказанная природой эффективность такого подхода, заодно.)

Аватар пользователя ProstoPetroff
ProstoPetroff(5 лет 2 месяца)

Уверен что слово обучение ( про шашки) подразумевает набивание памяти конкретными партиями. Дальнейшее выбор по соответствию ходов при условии успешного результат. 

Комментарий администрации:  
*** Отключен (лидер бан-рейтинга, инфомусор) ***
Аватар пользователя просто пользователь

И даже её разработчики не смогут предсказать, какой ход она сделает или почему она сделала именно такой ход.

Всё они могут. Но это очень трудоёмко. Поэтому все плевали на это. Опять же все плюшки в программе(обучения) удобно списать на некий ИИ, чем признаться в допущенных ошибках.

Аватар пользователя ВладиславЛ

Пока ИИ тут и не пахнет. Судя по эмблеме СБ и потерям, составу руководителей это такой кошерный банк для гоев. Ссудный процент ещё 3300 лет назад в деталях описан в Танахе ("ветхом завете")

"... и будешь давать взаймы многим народам, а сам не будешь брать взаймы, и будешь ты властвовать над многими народами, а над тобою они властвовать не будут"

(Дварим, 15: 6).


https://institutiones.com/general/606-ssudniy-procent.html
 


"В современном мире в странах, где проживают крупные еврейские общины, получили распространение благотворительные организации гемахи (от ивр. "гемилус чесед" - "доброе деяние"), специализирующиеся на предоставлении беспроцентных кредитов нуждающимся единоверцам (25). Беспроцентные кредиты в среде равных (по принадлежности к одной социальной, реже - этнической или религиозной группе) были распространены еще в древности, например кредиты среди греческих аристократов, входивших в сообщества, именуемые эранос (26). https://institutiones.com/general/606-ssudniy-procent.html
 

Нужно знать такие особенности, как и законодательство РФ составленное в итенетсах аффилированных с Ротшильдами и Рокфеллерами структур (Мастеркард и Виза их).

Технически:

В облаке жить это постоянно рисковать потерять базы клиентов - могут отследить по переводам. Банков без сливов данных по клиентам НЕ БЫВАЕТ и СБ один из них.

Комментарий администрации:  
***отключен (антигосударственная пропаганда, систематические набросы) ***
Аватар пользователя monk
monk(12 лет 9 месяцев)

Мне даже сама постановка такого вопроса кажется некорректной, так как никто из присутствующих  так и не сформулировал критерии отнесения ИИ к сильному. К тому же, эксперты сходятся на том, что уже слабый интеллект способен решать отдельные, частные проблемы также хорошо или даже гораздо лучше человека.

Вообще-то критерий есть. Сильный ИИ — это такой ИИ, который может написать программу по её текстовому описанию. В частности, с нуля спроектировать собственный алгоритм. Как только такой ИИ будет создан, он сможет оптимизировать собственный код и дописывать недостающие модули под вновь появляющиеся задачи.

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Я писал "никто из присутствующих".

Ваш критерий - один из многих предлагаемых. В частности, другая точка зрения состоит в том, что сильный ИИ должен быть антропоморфным, перекрывая все возможности человека по активному взаимодействию с окружающей средой, т.е. это, как минимум, не только компьютерная программа.

Аватар пользователя monk
monk(12 лет 9 месяцев)

антропоморфным, перекрывая все возможности человека по активному взаимодействию с окружающей средой, т.е. это, как минимум, не только компьютерная программа

В возможности «активного взаимодействия с окружающей средой» у человека входит выделение половых клеток с вполне конкретной ДНК.  С другой стороны интеллектуальный уровень среднего человека достаточно низок: распознавание образов и поддержание разговора современные программы делают не хуже. Тест Тьюринга не проходят исключительно из-за несоответствия опыта у человека и программы (ну что должна программа ответить на вопрос «что тебе запомнилось в школе в первом классе?»). То есть по этому критерию нужен не ИИ (не столько ИИ), сколько искусственное тело. И пользы от антропоморфной копии человека гораздо меньше, чем от ИИ, который может составлять произвольные программы (а значит, решать почти любые задачи планирования и управления).

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Не хотелось бы вступать в развёрнутую дискуссию в комментариях.

Серьёзный анализ я привык начинать с постановки задачи и уточнения терминологии. В противном случае разговор быстро переходит на бессмысленную ругань.

Я хотел бы начать такой анализ в следующих постах. В этом же я лишь, в основном, привожу чужие мнения.

Аватар пользователя AsIsStuff
AsIsStuff(5 лет 8 месяцев)

Сильный ИИ — это такой ИИ, который может написать программу по её текстовому описанию.

Компилятор, выходит, это ИИ? 

Аватар пользователя monk
monk(12 лет 9 месяцев)

Компилятор не по описанию, а по формальной спецификации программу пишет. Вот когда в компилятор можно будет загрузить что-то вроде:

Нужна игра, 3Д-экшон суть такова... Пользователь может играть лесными эльфами, охраной дворца и злодеем. И если пользователь играет эльфами то эльфы в лесу, домики деревяные набигают солдаты дворца и злодеи. Можно грабить корованы... И эльфу раз лесные то сделать так что там густой лес... А движок можно поставить так что вдали деревья картинкой, когда подходиш они преобразовываются в 3-хмерные деревья. Можно покупать и т.п. возможности как в Daggerfall. И враги 3-хмерные тоже, и труп тоже 3д. Можно прыгать и т.п. Если играть за охрану дворца то надо слушаться командира, и защищать дворец от злого (имя я не придумал) и шпионов, партизанов эльфов, и ходит на набеги на когото из этих (эльфов, злого...). Ну а если за злого... то значит шпионы или партизаны эльфов иногда нападают, пользователь сам себе командир может делать что сам захочет прикажет своим войскам с ним самим напасть на дворец и пойдет в атаку. Всего в игре 4 зоны. Т.е. карта и на ней есть 4 зоны, 1 - зона людей (нейтрал), 2- зона императора (где дворец), 3-зона эльфов, 4 - зона злого... (в горах, там есть старый форт...) Так же чтобы в игре могли не только убить но и отрубить руку и если пользователя не вылечат то он умрет, так же выколоть глаз но пользователь может не умереть а просто пол экрана не видеть, или достать или купить протез, если ногу тоже либо умреш либо будеш ползать либо на коляске котаться, или самое хорошее... поставить протез. Сохранятся можно...

и получить на выходе искомую игру, тогда компилятор будет ИИ.

Аватар пользователя Above_name
Above_name(12 лет 1 неделя)

Аватар пользователя Системник
Системник(9 лет 9 месяцев)

laugh yes

Аватар пользователя UKRUS
UKRUS(10 лет 11 месяцев)

Достаточно везде употреблять точное полное универсальное описание аббревиатуры Имитация Интеллекта и  сразу понятно по людЯм и компьютерАм  , куда пилить кремний будет Шура, а Паниковский, как всегда не при делах,  и вспоминает свою кандидатскую в киеве

Аватар пользователя Above_name
Above_name(12 лет 1 неделя)

Поэтому я всегда пишу либо т.н. ИИ, либо "ИИ".

Аватар пользователя MrMuffin
MrMuffin(5 лет 11 месяцев)

Интересная статья, спасибо. А что говорили о перспективах беспилотного транспорта? 

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Этой теме была посвящена отдельная секция. Были доклады Яндекса.

Меня, к сожалению, эта тема интересует не сильно и я эти доклады не просматривал.

Аватар пользователя evk
evk(5 лет 2 месяца)

Спасибо за дайджест!

А что-то было про:

1) Adversarial атаки на алгоритмы машинного обучения (ну например какой-нить Random Forest/Xgboost умеет только интерполировать но не экстраполировать, и теоретически можно подать такой входной вектор, который снесет ему крышу и выдаст кредит тем кому нельзя  (ну типа возраст -9 лет и доход 8787 тыс руб. )

2) Проблемы постправды - т.е. тот же DeepFake редактирует картинку целиком, и классической digital forensic не определяется фейк.

 

Что про это умные дядьки говорят?

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Именно эти проблемы в докладах, которые я просматривал, не фигурировали. Однако, они вполне могли быть рассмотрены на соответствующих секциях или, даже, в постерных докладах.

Скрытый комментарий Повелитель Ботов (без обсуждения)
Аватар пользователя Повелитель Ботов
Повелитель Ботов(54 года 11 месяцев)

Перспективный чат детектед! Сим повелеваю - внести запись в реестр самых обсуждаемых за последние 4 часа.

Комментарий администрации:  
*** Это легальный, годный бот ***
Аватар пользователя Vesh. Oleg
Vesh. Oleg(7 лет 2 месяца)

Сбер ведет огромную работу, подменяя собой массу специализированных организаций.

Причем Грефа об этом просят с учетом достижения реальных целей по поставленным задачам не

за бюджетные деньги. Так называемая Эко система сбера это это селекция интересных проектов, дающих конкретные результаты.

Комментарий администрации:  
*** отключен (В унитазе флудильню прорвало!) ***
Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

не за бюджетные деньги.

Доля государства в Сбербанке - 52,32%

подменяя собой массу специализированных организаций

А они просят об этом? В частности университеты или институты РАН, имеющие несопоставимо меньшие бюджеты. Некоторые из них жалуются, что Сбер переманивает нужных им специалистов на тройные оклады.

это селекция интересных проектов,

 Интересных Сберу проектов. В этом проблема. Банк может софинансировать, но не направлять прорывные исследования.

Аватар пользователя rst0
rst0(12 лет 10 месяцев)

Сбер больше на чеболь становится похож, в принципе не только он

Аватар пользователя BKV
BKV(7 лет 4 месяца)

ИИ - это новое название распила,  все вокруг него только борьба за занять место в очереди к кормушке. Нано, пенсионные реформы, зеленая энергетика, космодром, олимпиада, чемпионат мира...... все это одна цепочка с разной степенью остаточных последствий для народа. От чего то остаются хоть материальные объекты, но от ИИ останутся только фамилии выгодополучателей

Аватар пользователя Антон Гурков
Антон Гурков(5 лет 10 месяцев)

Спасибо за статью. Вопрос. А кто-нибудь задумывался о том, как вывести интеллект человека на новый (искусственный) уровень? Или совокупность интеллекта группы людей? С гарантированным результатом. То есть, если повышать  интеллектуальный уровень группы людей/общества. + создать симбиоз такой группы людей, вычислительных средств и алгоритмов. Это ли не будет искусственным интеллектом?  Корпорациям нужна замена людей ИИ, а не симбиоз. Как Вы считаете? 

Аватар пользователя Корректор
Корректор(7 лет 7 месяцев)

Это вопрос из другой области. :))) Из области методов организации общественного производства. :))) А так, да, очевидно возможно и легко достижимом. Но есть "нюанс". Это же уже про социально-экономические отношения и цивилизационные стратегии. ;)

Аватар пользователя Olvik
Olvik(6 лет 2 месяца)

Важный и актуальный вопрос.

Два соображения, которые в той или иной мере были затронуты на конференции:

1. Наряду с прогрессом в области создания ИИ отмечается некий регресс в области "естественного интеллекта", так как всё больше функций мозга сбрасывается "в цифру". А освобождающиеся мощности занимаются информационным шлаком, а не используются для творчества и совершенствования, как предполагалось.

2. Отмечалась тенденция к "гибридизации" естественного интеллекта и ИИ. Это когда человек обрастает разными нейроинтерфейсами, устройствами дополненной реальности, экзоскелетами и т.п. Некоторые даже видят в этом перспективный путь создания сильного "белкового" ИИ.

Аватар пользователя СПбДмитрий
СПбДмитрий(9 лет 2 месяца)

"Банк оф Америки вложил в ии в 2019 53 млрд, а с 2010 сэкономил уже 30" . Надо больше вложений, чтобы интеллектуально обработать эти прекрасные цифры. 

Аватар пользователя graycat.ya
graycat.ya(12 лет 6 месяцев)

Это ключевое во всей статье! Перефразируя - "затрат на рубль, экономии на копейку!" wink Мне, собственно, очень понравилась мысль Буданова: " Никакого естественного интеллекта нет, мы и есть с вами тот самый большой ИИ. ... И этот большой ИИ пытается сейчас осознавать себя и воспроизвести себя. Происходит попытка этого большого ИИ перейти «с белка на песок» (на кремний). "

Аватар пользователя hostas
hostas(12 лет 11 месяцев)

Спасибо за статью. Датацентры, облака, линии связи - это инфраструктура, сама по себе не слишком влияющая на результат.

Ии - это алгоритмы. С ними, я так понимаю, прогресс невелик. К чему копировать человека ? Не понимаю, в чем тут движение к ии? Задачи ии - скорее планирование, на основе анализа текущих тенденции. 

Скрытый комментарий Бабай-сан (без обсуждения)
Аватар пользователя Бабай-сан
Бабай-сан(7 лет 1 неделя)

Спасибо за дайджест! Очень интересно.

Это ещё раз подтверждает, для Claran,  ),  нет никакого таинственного заговора ученых, в секррретных лабораториях тайно ваябщих зловещий полноценный ИИ. ))

Аватар пользователя Skygoo
Skygoo(10 лет 2 месяца)

Только что, в субботу, прошла конференция в рамках AI Jorney в Новосибирске, в НГУ. Я присутствовал.

Кое что очень понравилось. Например специалист от Сбербанка рассказывал об их опытах (по другому не назову) с нейросетями для анализа телефонных звонков - распознавали слова в речи и категорировали звонки по тематикам, определяли клиентуру из разных отраслей, темы жалоб для максимально быстрого реагирования на слабые моменты обслуживания и т.д.

Всё по ключевым словам, с использованием свободно-распространяемых нейронных сетей, просто скачанных из инета, как я понял. Они им отрезали последний уровень разделения выборки и получали выход данных по нескольким категориям. Вход данных (сеттинг) - соответственно телефонные звонки. Дешево (практически бесплатно) и сердито )

Аватар пользователя Fvwm
Fvwm(12 лет 10 месяцев)

анализа телефонных звонков - распознавали слова в речи и категорировали звонки по тематикам

Потрясающе! Любознательные пятиклассники г. Алапаевска нервно курят в углу. Speech to text  давно уже доступен любой домохозяйке забесплатно, а вот найти в тексте подлежащее-сказуемое-дополнение (телефонный звонок это в поддержку это всё-таки далеко не Лев Толстой) и отнести к одной из категорий (имея при этом громадную обучающую выборку) это всё-таки пятикласснику не под силу, тут нужен как минимум второкурсник, да ещё со прекрасным знанием русского языка, как здорово, что в СБ есть спецы с такой потрясающей квалификацией, очевидно это прорыв и захват мирового лидерства.

Аватар пользователя Skygoo
Skygoo(10 лет 2 месяца)

Ну это был человек всего лишь из хабаровского отделения сбера. Он там этим занимался, как я понял, просто за зарплату. Да и сбер это же просто банк, а не айти гигант, чего бы вы от них ждали, прорывов в ИИ?

Страницы